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Abstract—Non-intrusive appliance load monitoring (NIALM)
is to identify major energy guzzlers in a house or building without
introducing extra metering cost. To develop an easy-to-use and
scalable solution to energy disaggregation for contemporary
large-scale appliance groups, we propose a Semi-Intrusive Appli-
ance Load Monitoring (SIALM) approach in this paper. Based
on a simple power model, a Sparse Switching Event Recovering
(SSER) model is established to recover appliance states from
their aggregated load data, and the necessary conditions for
unambiguous state recovery of multiple appliances are provided.
Under the constraints of necessary conditions, the minimum
number of required smart meters is pursued via a greedy clique-
covering algorithm. We evaluate the performance of SIALM
with Monte Carlo simulation. The results show that our method
achieves high accuracy not only in appliances’ state recovery but
also in energy disaggregation.

I. INTRODUCTION

Non-intrusive appliance load monitoring (NIALM) is to
find the energy consumption of individual appliances from
only a single measure of household electricity consumption.
Without introducing extra metering cost, accurate NIALM
helps identify major energy guzzlers in the house. It motivates
users to take proper actions for energy saving and greatly
facilitates demand response (DR) programs.

Because of its significance, tremendous research efforts
have been devoted to NIALM and a broad spectrum of
approaches have been proposed since 1980s [6], [16]. Never-
theless, NIALM still remains an open challenge for large-scale
appliances, since the number of possible appliances’ states
grows exponentially.

Existing solutions may suffer from the scalability problem
and may pose non-realistic demand to end users. First, large-
scale, diverse appliance groups consisting of tens or hundreds
of appliances are common in modern houses and buildings.
Many NIALM approaches were developed and validated upon
small-scale appliance groups [1], [3], [4], [7], [8], [10], [11],
[12], [13], and their accuracy with large-scale appliance groups
may be unclear. Second, some NIALM methods require expert
knowledge or use auxiliary measurement devices to extract
appliance signatures, i.e., special features that can be used to
identify an appliance. This requirement poses a hurdle to end
users who normally may not have enough knowledge to carry
out such tasks.

To pursue an easy-to-use and scalable solution to energy
disaggregation for contemporary large-scale appliance groups,
we propose (1) relying only on readily available information
of appliances and (2) using multiple low-cost meters that

optimally form a monitoring network. On the former, we
observe that the rated power1 of an appliance is a readily
available feature in practice. Such information could be easily
found in the appliance’s manual or some public websites [2].
Regarding the latter, low-cost energy meters can be plug-and-
play and have become popular on current market. With such
meters, we can easily monitor the power consumption of a
single appliance or the aggregated power consumption of a
small group of appliances.

Based on the above observations, we make the following
contributions in the paper:
• For a large-scale appliance group, instead of using only

one meter, we deploy multiple meters, each measuring
a sub-group of appliances. We call this approach semi-
intrusive.

• To infer the states of different appliances, instead of re-
lying on sophisticated appliance signatures from massive
load data, we make use of the appliances’ rated power.

• For a group of appliances, we give the necessary condi-
tions for unambiguous state monitoring. The conditions
provide theoretical evidence for accurate energy disag-
gregation results.

• Under the constraints of necessary conditions, we develop
an algorithm to achieve the minimum number of meters
for unambiguous appliance state monitoring.

II. PROBLEMS DEFINITION

A. Appliance Power Model

Most household appliances have one or multiple operating
modes when they are turned on [13]. Furthermore, for a certain
operating mode of an appliance, the value of its rated power
can be easily found in the appliance’s manual or some open
database [2], and the power deviation2 of certain operating
mode can be easily derived from the power reading samples,
without applying sophisticated machine learning approaches.

Without loss of generality, we consider a group of N
appliances. For the n-th appliance with m operating modes,
we construct a power vector to denote corresponding rated
powers:

pn := [pn1 , p
n
2 , · · · , pnm]

T
, (1)

1The rated power here refers to the mean value of real power consumption
of an appliance under a certain operating mode, with unit of Watt.

2The power deviation here refers to the maximum difference between
the real power and rated power, with unit of Watt. Thus, the real power
consumption of a running appliance with rated power p and power deviation
θ is bounded by [p− θ, p+ θ].



TABLE I
TABLE OF NOTATIONS

Symbol Explanation
p rated power vector of all appliances
pn rated power vector of the n-th appliance
pnm rated power of the n-th appliance at the m-th operating mode
θ power deviation vector of all appliances
θn power deviation vector of the n-th appliance

θnm
power deviation vector of the n-th appliance at the m-th
operating mode

λn power model of the n-th appliance
Λ power model of a group of appliances
Λn power model of a sub-group of appliances
s(t) state vector of all appliances at time t
sn state vector of the n-th appliance along the timeline
sn(t) state vector of the n-th appliance at time t

snm(t)
on/off state of the m-th operating mode of the n-th appliance
at time t

S state matrix of all appliances along the timeline
Sn recovered state matrix of the n-th appliance along the timeline
x aggregated power vector of all appliances
x(t) aggregated power reading of all appliances at time t
xn(t) power reading of the n-th appliance at time t

a power deviation vector to represent the power deviations at
corresponding operating modes:

θn := [θn1 , θ
n
2 , · · · , θnm]

T
, (2)

To denote the rated power of all the N appliances with
multiple operating modes, we construct the following power
vector:

p :=
[(
p1
)T (

p2
)T · · ·

(
pN
)T ]T

. (3)

and power deviation vector:

θ :=
[(
θ1
)T (

θ2
)T · · ·

(
θN
)T ]T

. (4)

Definition 1. The power model of the n-th appliance is defined
as:

λn := {pn, θn}, (5)

and that of a group of N appliances is defined as:

Λ := {p, θ}. (6)

B. Semi-Intrusive Appliance Load Monitoring (SIALM)

Definition 2. Unambiguous Appliance State Monitoring:
Given the aggregated power readings of multiple appliances
in a time interval, identify the exact state of each appliance
at each time instant.

With the above definition, the Semi-Intrusive Appliance
Load Monitoring (SIALM) problem is to find the minimum
number of meters to achieve unambiguous appliance state
monitoring. Note that this problem is different from the real-
time appliance state monitoring problem raised before in [5],
[14], [15].

III. SPARSE SWITCHING EVENT RECOVERING (SSER)
Considering a group of N appliances, we use a state

vector to denote states of the n-th appliance’s corresponding
operating modes at an arbitrary time instant, t, as:

sn(t) := [sn1 (t), sn2 (t), · · · , snm(t)]
T
, (7)

where snm(t) represents the on/off state of the m-th operating
mode of the n-th appliance at time instant t. Thus, snm(t) ∈
{0, 1} and ‖sn(t)‖1 ≤ 1, with snm(t) = 1 indicates the n-
th appliance is on the m-th operating mode at time t, and 0
otherwise.

Then, with (7), we have the state vector of all the N
appliances at time t, as:

s(t) :=
[(
s1(t)

)T (
s2(t)

)T · · ·
(
sN (t)

)T ]T
, (8)

which is an M -dimension vector, where M =
∑N

n=1m
n

and mn denotes the number of operating modes of the n-th
appliance.

Lemma 1. Given the power model of N appliances in (6), the
aggregated power reading of the N appliances at an arbitrary
time instant t, denoted as x(t), should be bounded by:

sT (t) (p− θ) ≤ x(t) ≤ sT (t) (p+ θ) . (9)

With (8), we can construct a state matrix to represent states
of all appliances from time t = 1 to t = K:

S := [s(1) s(2) · · · s(K)] . (10)

Since s(t) is an M -dimension column vector, S is an M -by-K
matrix, where M =

∑N
n=1m

n with mn denoting the number
of operating modes of the n-th appliance.

Lemma 2. Given the power model of N appliances in (6),
based on Lemma 1, their aggregated power readings from
time t = 1 to t = K, denoted as:

x := [x(1), x(2), · · · , x(K)]
T
, (11)

should be bounded by:

ST (p− θ) ≤ x ≤ ST (p+ θ) . (12)

For the appliances in a house or building, their state switch
events along the timeline are sparse, compared with the total
load samples [14], [15]. Thus, given a group of N appliances
with power model Λ, and aggregated power readings from
time t = 1 to t = K, x, we can establish an optimization
model of sparse switching event recovering (SSER):

min
S

TV(SD)

s.t. x− ST (p+ θ) ≤ 0,
ST (p− θ)− x ≤ 0,
HS ≤ 1,

(13)

where TV(A) denotes the total variation of matrix A, calcu-
lated by

TV(A) :=
∑
i

∑
j

|ai,j | , (14)



D is a K-by-(K − 1) difference matrix defined by:

D :=



−1
1 −1

1
. . .
. . . −1

1 −1
1


︸ ︷︷ ︸

K−1

(15)

and H is an N -by-M permutation matrix defined by:

H :=


1 · · · 1︸ ︷︷ ︸

m1
1 · · · 1︸ ︷︷ ︸

m2
. . .

1 · · · 1︸ ︷︷ ︸
mN


︸ ︷︷ ︸

M

(16)

where M =
∑N

n=1m
n with mn denoting the number of

operating modes of the n-th appliance. In (13), 0 is a K
dimensional all 0 vector, and 1 is an N -by-K all 1 matrix.

IV. NECESSARY CONDITIONS OF UNAMBIGUOUS STATE
RECOVERY

With the SSER optimization model, we provide the nec-
essary conditions to achieve unambiguous appliance state
monitoring. We omit the proof to save space.

Theorem 1. Given a group of N appliances with power model
Λ, and aggregated power readings in a time interval, the
necessary conditions to achieve unambiguous appliance state
recovery under SSER model are:

C-1: ∀i, j ∈ {1, 2, · · · , N}, i 6= j[
pi − θi, pi + θi

]
*
[
pj − θj , pj + θj

]
, (17)

C-2: 2 ‖θ‖1 < min{p1 − θ1, p2 − θ2, · · · , pN − θN}. (18)

V. OPTIMAL SMART METER DEPLOYMENT

We partition all appliances into exclusive sub-groups such
that within each sub-group, the power model of appliances
fits for the necessary conditions and can achieve unambiguous
state monitoring. In order to lower the cost as much as
possible, it is desirable to minimize the total number of sub-
groups, i.e., to minimize the number of smart meters. This
optimization problem can be formulated as follow:

min
{Λ1,Λ2,··· ,Λn}

n

s.t.
⋃

Λi = Λ,

Λi
⋂

Λj = ∅, i 6= j,

Λi = {∀{p, θ} fits C-1&C-2} .

(19)

In order to solve the above problem, a graph G = (V,E) is
constructed, where each vertex v ∈ V represents the power
model of an appliance and an edge is built between two

vertices if the power models fit constraints C-1 and C-2. It
is easy to see that the problem is equivalent to the clique-
covering problem, which is NP-complete. Hence, a greedy
clique-covering algorithm is adopted to obtain an approximate
solution. The basic idea of the algorithm is to find cliques that
cover more vertices that have not been clustered so far and
run the process iteratively until all vertices are clustered. It is
easy to prove that in the worst case the running complexity
of this algorithm is O(N3) where N is the total number of
appliances.

VI. NUMERICAL EVALUATIONS

A. Data Generation via Monte Carlo Simulation

TABLE II
PARAMETER SETTING IN MONTE CARLO SIMULATION

Parameter Setting
Number of Appliances (N ) 50, 100, 200

Number of Operating Modes (M ) 3
Total Samples/Time Interval (K) 8640
Lowest Appliance Power (pmin) 20w
Highest Appliance Power (pmax) 2000w

Power Range Ratio (r) [0.01, 0.1]
Poisson Parameter (τ ) 180

We apply the Monte Carlo simulation to generate the
load data for large-scale appliances. The parameters used to
generate the appliance power model and synthetic data are
listed in Table II.

• Given the number of appliances, N , the operating mode
number of each appliance is uniformly assigned between
1 and M .

• Given the lowest power (pmin) and the highest power
(pmax), the lower bound of one operating mode of an
appliance (pl) is a random variable uniformly distributed
between pmin and pmax. The upper bound of the op-
erating mode (pu) is determined by a parameter called
power range ratio (r) and is calculated by pu = min{pl+
random([0, r · pl]), pmax}, where random([0, r · pl])
returns a random number uniformly distributed in the
range [0, r · pl].

• Validate the appliance’s power model with unambiguous
state monitoring necessary constraints C-1 and C-2, and
referring to the necessary conditions, partition the N
appliances into multiple sub-groups using the greedy
clique-covering algorithm.

• To generate a sample, each appliance reports its operating
mode, which is a random number uniformly selected in
its mode range, and its power reading, which is a random
number uniformly distributed between the appliance’s
power bounds. It reports 0 if its state is off. At the end, the
aggregated power reading of appliances (i.e., the sum of
appliances’ power readings in the sub-group) is recorded.

• The occurrence of state switching event of an appliance
follows a Poisson distribution with parameter τ .



TABLE III
PERFORMANCE RESULTS: NON-INTRUSIVE APPLIANCE LOAD MONITORING (NIALM) VS. SEMI-INTRUSIVE APPLIANCE LOAD MONITORING (SIALM)

(In EDA and SRA, ∗ is labeled for the optimal value from the global optimization, and others are approximate ones from sequential local optimizations.)

# of Appliances Non-Intrusive Appliance Load Monitoring (NIALM) Semi-Intrusive Appliance Load Monitoring (SIALM)
# of Smart Meters EDA SRA # of Smart Meters EDA SRA

30 1 54.07% 51.40% 6 ∗98.60% ∗100.00%
50 1 46.07% 41.03% 8 88.71% 89.63%
80 1 44.05% 42.81% 16 89.33% 90.65%
100 1 42.09% 42.71% 18 87.48% 85.45%
200 1 39.54% 37.92% 35 85.66% 84.30%

B. Performance Metrics and Evaluations

• Energy Disaggregation Accuracy (EDA): which indicates
the accuracy of assigning correct power values to corre-
sponding appliances [9].

EDA := 1−
∑N

n=1 ‖pnr − Snpn‖1
2 ‖x‖1

, (20)

in which N is the number of appliances, pnr , Sn and
pn represent the real power consumption vector, the
recovered state matrix, and the rated power vector of
the n-th appliance, respectively, and x is the aggregated
power vector.

• State Recovery Accuracy (SRA): which indicates the
accuracy of recovering the states of appliances.

SRA := 1−
∑N

n=1 ‖Sn
r − Sn‖1

N ·K
, (21)

in which N is the number of appliances, Sn
r , S

n represent
the real state matrix and the recovered state matrix
of the n-th appliance, respectively, and N,K represent
the number of appliances and the number of samples,
respectively.

The energy disaggregation accuracy, state recovery accu-
racy, and the minimum number of required meters are sum-
marized in Table III. We have proved that solving the SSER
model is NP-hard. So except in the first case where the number
of appliances is small, we used a sequential local optimization
algorithm to find approximation solutions in other cases. This
is the reason why the values of SRA except the first one did
not reach 100%.

The results show that with the help of a few more smart
meters, the accuracy of energy disaggregation for large-scale
appliances can be significantly improved. Furthermore, from
the first case where the number of appliances is 50, we have
shown that with unambiguous necessary conditions and the
SSER model, the accuracy of recovered appliance states can
reach as high as 100%.

VII. CONCLUSIONS

We proposed a Semi-Intrusive Appliance Load Monitoring
(SIALM) approach to energy disaggregation for large-scale
appliances. Instead of using only one meter, multiple meters
were deployed to collect the load data from sub-groups of
appliances. Based on a simple power model, we established a
Sparse Switching Event Recovering (SSER) model to recover
appliance states from the aggregated load data, and provided

the necessary conditions for unambiguous state recovery of
multiple appliances. Furthermore, we found the minimum
number of meters via a greedy clique-covering algorithm. Our
simulation results disclosed that for large-scale appliances,
SIALM performs much better than NIALM.
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