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Abstract—Energy disaggregation is to discover the energy con-
sumption of individual appliances from their aggregated energy
values. To solve the problem, most existing approaches rely on
either appliances’ signatures or their state transition patterns,
both hard to obtain in practice. Aiming at developing a simple,
universal model that works without depending on sophisticated
machine learning techniques or auxiliary equipments, we make
use of easily accessible knowledge of appliances and the sparsity
of the switching events to design a Sparse Switching Event
Recovering (SSER) method. By minimizing the total variation
(TV) of the (sparse) event matrix, SSER can effectively recover
the individual energy consumption values from the aggregated
ones. To speed up the process, a Parallel Local Optimization
Algorithm (PLOA) is proposed to solve the problem in active
epochs of appliance activities in parallel. Using real-world trace
data, we compare the performance of our method with that
of the state-of-the-art solutions, including the popular Least
Square Estimation (LSE) methods and a recently-developed
machine learning method using iterative Hidden Markov Model
(HMM). The results show that our approach has an overall better
performance in both detection accuracy and overhead.

I. INTRODUCTION

Energy disaggregation, also known as non-intrusive appli-
ance load monitoring (NIALM), aims to learn the energy con-
sumption of individual appliances from their aggregated en-
ergy consumption values, e.g., the total energy consumption of
a house. With accurate energy disaggregation, the house owner
can 1) learn how much energy each appliance consumes, 2)
take necessary actions to save energy, and 3) participate in
utility demand response programs. Furthermore, with smart
meters broadly deployed in many countries, sufficiently high
resolution of energy data can be collected, making it feasible
to develop efficient energy disaggregation solutions.

Due to its critical meaning, the energy disaggregation
problem has attracted more and more attention since 1980s.
Recently, it has also drawn attention from both large elec-
tronics companies and small start-ups, such as Intel, Belkin,
GetEmme, and Navetas. While many methods have been
developed for energy disaggregation, according to [15], no
solutions work well for all types of household appliances.
They either work poorly for new types of appliances or require
complex machine learning method to learn appliances’ (latent)
features.

A. Related Work

Tremendous research efforts have been devoted to solving
the energy disaggregation problem. The existing approaches

can be roughly divided into two categories: signature based
methods and state transition based methods.

Most approaches are based on appliances’ signatures, i.e.,
specific features such as the real/reactive power, current, and
voltage of running appliances [5]. These methods need the
support of high sampling rate and build either steady or
transient signal features of appliances with labeled training
datasets. The signal features are treated as the appliances’
signatures [10], [8], based on which event detection schemes
are developed to detect appliances’ on/off as well as different
running states. The detected events are ascribed to certain
appliances’ activities via classification [2], [13]. In addition
to time-domain signal features, spectral analysis has also been
adopted to search for appliances’ signatures in the frequency
domain [9], [4]. Nevertheless, the signatures are hard to obtain
without particular machine learning techniques or auxiliary
measurements.

Some other methods made use of state transition in appli-
ances’ activities. The Hidden Markov Model (HMM) has been
adopted to model the state transition patterns of appliances.
The hidden states of each appliance at each time instant
are predicted by inference algorithms, such as the Viterbi
algorithm, with the observed emission probabilities [12]. Non-
negative sparse coding has been proposed to solve the energy
disaggregation problem in [6], in which a training process is
needed to obtain the basis vector related to the state transition
patterns of different appliances. These methods usually need
a large number of trainings, and thus are time consuming.
In addition, the performance highly relies on the pattern of
appliances’ activities in the training datasets, and as such the
performance may vary significantly from test to test.

B. Our Contributions

The related work shows that most current energy disaggre-
gation methods lack practicality for common house occupants.
Therefore, aiming at establishing an easy-to-use, universal
model for energy disaggregation, we make the following
contributions in this paper.

• Instead of relying on appliances’ signature, we use the
information of rated power, which is easy to obtain, e.g.,
from the user’s guide of appliances. With experimental
evaluation, we show that the method is robust even if
this information is not very accurate.



• Based on the simple power model and the sparsity
property of appliance activities, we establish a universal
Sparse Switching Event Recovering (SSER) optimization
model, and tries to minimize the total variation of on/off
switching events, which has never been explored before
to solve the energy disaggregation problem.

• We develop a Parallel Local Optimization Algorithm
(PLOA) to solve SSER, which can significantly reduce
the computational complexity of the original problem and
is guaranteed to obtain the optimal solution if some weak
hypotheses hold.

• We build a small-scale energy monitoring platform for a
group of household appliances, and evaluate our method
using the real-world trace data collected over the plat-
form. The results indicate that our approach has an overall
better performance than state-of-the-art solutions.

II. SYSTEM MODEL

A. Power Pattern

We focus on the aggregated power readings of a number of
appliances in a house, and arrange them from time t = 1 to
T as an aggregated power vector1,

X := [X1, X2, · · · , XT ]
T
. (1)

The power pattern of an appliance indicates the energy
consumption value when it is turned on or in stand-by state.
In this paper, we use a simple power model which can be
easily obtained from the user’s guide or the specification of
an appliance. We represent the power pattern of an appliance
n by a tuple (In, Pn,Θn), where In is its stand-by power, Pn

is its rated power, and Θn is its power deviation.
Assume that a house is equipped with N appliances. We

define a stand-by power vector to represent their stand-by
powers as

I := [I1, I2, · · · , IN ]
T
, (2)

a rated power vector to represent their rated powers as

P := [P1, P2, · · · , PN ]
T
, (3)

and a power deviation vector to represent their power devia-
tions as

Θ := [Θ1,Θ2, · · · ,ΘN ]
T
. (4)

Definition 1. Given a house with a certain number of appli-
ances, we call the sum of the appliances’ stand-by power,
denoted by P0, as the baseline power of the house, i.e.,
P0 = ‖I‖1.

Note that virtually all appliances’ stand-by power could be
found from users’ manual, technical specification or public
websites such as [3]. Theoretically, P0 should be constant,
which is the minimum power of the house at any time instant.
In practice, however, there are small variations in P0 due to

1Without loss of generality, all vectors in the paper are column vectors.
When T is used as the superscript of a vector/matrix, it means the transpose
of the vector/matrix in this paper.

inaccurate stand-by power specification, thus it is possible that
the actual power could be below the baseline power.

At time instant t, given the state vector of all appliances
St, the aggregated power reading Xt, (t = 1, 2, . . . , T ), is
bounded by:

(1− St)
T I + ST

t (P −Θ) ≤ Xt,

(1− St)
T I + ST

t (P + Θ) ≥ Xt,
(5)

where 1 is the all-one vector. In other words, the following
constraints hold:

X − ST (P + Θ)− (I− S)T I ≤ 0,
ST (P −Θ) + (I− S)T I −X ≤ 0,

(6)

where I is the N -by-T all-one matrix.

B. Sparsity of Switching Events

Fig. 12 shows an example of energy consumption and
appliances on/off switching events in a typical house during
one day. From the figure, we can see that:

• As shown in Fig. 1-a, the appliances do not switch on/off
frequently in the whole time period.

• Most switching events happened in a small number of
time intervals, which we call active epochs (refer to
Section III-A for formal definition) and are illustrated
with shaded windows in Fig. 1-b.

Fig. 1. Energy consumption and appliances’ on/off switching events in a
house over the course of a day [7]

We denote the on/off states of N appliances from time t = 1
to T with a state matrix, S, defined as

S :=


S
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...
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. . .
...

S
(N)
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(N)
2 · · · S

(N)
T

 , (7)

in which S(n)
t represents the on/off state of the n-th appliance

at time t, and S(n)
t ∈ {0, 1} with S(n)

t = 1 indicates the n-th
appliance is on and 0 otherwise.

2The figure is from [7] with slight modification for better illustration.



Then, the on/off switching events of the N appliances from
t = 2 to T can be indicated by an event matrix, ∆S, calculated
as

∆S = SD, (8)

where D is a differential matrix with size of N -by-(N − 1):

D :=



−1
1 −1

1
. . .
. . . −1

1 −1
1


(9)

The element of event matrix ∆S
(n)
t ∈ {−1, 0, 1}, with

∆S
(n)
t = 1 or −1 indicating a switching on or off event of the

n-th appliance at time t, respectively, and 0 no switching event.
Since the sampling rate of current smart meters nowadays is
relatively high, we neglect the situation where an appliance
has a series of switching events within a sampling interval,
i.e., |∆S(n)

t | < 2.

Assertion 1. According to our real-world observations, ∆S
is a sparse matrix.

C. Sparse Switching Events Recovering

To compute the energy consumption of an individual appli-
ance during a time period, we also need to know its activities
(states changing) along the timeline. Based on the power
model of appliances and sparsity feature of switching events,
we formulate the following problem to recover the on/off states
of individual appliance at each time instant.

• Input: Aggregated power vector X , power pattern
(I, P,Θ).

• Output: State matrix S, i.e., the on/off states of all
appliances along the timeline.

A Sparse Switching Event Recovering (SSER) model is
established to recover the states of N appliances from time
t = 1 to T .

min
S

TV(∆S)

s.t. X − ST (P + Θ)− (I− S)T I ≤ 0,
ST (P −Θ) + (I− S)T I −X ≤ 0,

(10)

where ∆S is defined by (8) and TV(·) denotes the total
variation of the event matrix calculated by

TV(∆S) :=

N∑
n=1

T∑
t=1

∣∣∣∆S(n)
t

∣∣∣ . (11)

After obtaining the on/off states of each appliance along
the timeline, we can estimate its power readings with its
rated power at each time instant. Therefore, we can get an
approximate estimation of the power consumption of each
appliance. This is equivalent to solving the original energy
disaggregation problem. Note that all appliances contributing
to the aggregated power vector need to take into consideration

in SSER model. Otherwise, the accuracy of recovered states
will decrease. This may be a limitation when applying our
approach, as some appliances may be unknown or forgotten.

The total variation (TV) minimization is a classical approach
to recovering a sparse matrix. It has been widely applied in
signal restoration, image denoising, and compressive sens-
ing [11]. To the best of our knowledge, however, it has not
been explored in the context of energy disaggregation. Unlike
other optimization methods, such as least square fitting [13],
total variation minimization is a type of least absolute devi-
ations fitting, which has been proved to be more robust in
various applications.

III. PARALLEL LOCAL OPTIMIZATION

There were significant research efforts to solve the total
variation minimization problem. Nevertheless, the form of
total variation in our case is a discrete version and involves
integer variables, which is much harder. We prove that solving
SSER is NP-hard (refer to [14] for details), so it is hard to find
the optimal solution, especially when the time interval is large.
Nevertheless, the active epochs of on/off events suggest that
we can perform optimization in a smaller, local time window.

A. Detection of Active Epochs
Definition 2. An active epoch of a house is defined as a
time interval from the time when the aggregated power of the
house jumps above the baseline power until the time when the
aggregated power drops below the baseline power.

Active Epoch

Baseline
Baseline

Appliance 1

Appliance 2

Appliance 3

Aggregated Load

On/Off 
Switching EventActive Epoch

Fig. 3. A sketch map to illustrate the concepts of active epoch and baseline
power using three appliances

Fig. 3 is a sketch map of switching activities and power
readings of three appliances with constant power, in which
the concepts of baseline power and active epoch are illustrated.
Algorithm 1 shows the pseudo code of detecting active epochs.

B. Parallel Local Optimization Algorithm (PLOA)
Without loss of generality, we take aggregated load data of

N appliances from time t = 1 to T as an example to show
the major steps of PLOA.

Step 1: Detect all active epochs along the timeline with
Algorithm 1. Denote the set of active epochs as W =
{W1,W2, · · · ,Wk}.

Step 2: In the active epoch starting at t with the length of
`, solve the following optimization problem to obtain St:t+`.

min
St:t+`

TV(St:t+`Dt:t+`)

s.t.

Xt:t+` − (St:t+`)
T (P + Θ)− (It:t+` − St:t+`)

T I ≤ 0,
(St:t+`)

T (P −Θ) + (It:t+` − St:t+`)
T I −Xt:t+` ≤ 0,

(12)
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Fig. 2. Energy monitoring platform, monitored appliances, and measuring devices

Algorithm 1 Active Epoch Detection
Input: Aggregated power vector X , baseline power P0.
Output: Set of Active epochs, W .

1: t = 1, k = 0
2: while t ≤ T do
3: start = end = t
4: while Xend > P0 and end < T do
5: end = end+ 1
6: end while
7: if end > start then
8: k = k + 1
9: Wk = [start, end]

10: end if
11: t = end+ 1
12: end while
13: return W = {W1,W2, · · · ,Wk}

where St:t+` is a N -by-` submatrix of S, Dt:t+` is a `-by-
(N−1) submatrix of D, It:t+` is a N -by-` submatrix of I, and
Xt:t+` is a vector containing the aggregated power readings
of all appliances from time t to time t+ `.

Step 3: Perform Step 2 on the k active epochs to obtain a
group of k solutions in parallel. Since outside of active epochs,
appliances are considered as stand-by, a complete state matrix
S1:T can thus be built.

We can show that the computational complexity to solve
(12) is O(2N ·`). Since `� T as shown in Fig 1, the (mixed-
integer linear program) problem can be solved efficiently,
using tools such as CVX 2.0 with a Gurobi engine [1].

Theorem 1. Assume that the global optimal solution to SSER
in (10) is S∗, and the solution obtained from POLA is Ŝ, if
both solutions are unique, then Ŝ = S∗.

Proof: For an arbitrary active epoch starting at t with the
length of `, assume that Ŝt:t+` is the unique local optimal
solution obtained via (12). Assume that the global optimal
solution to SSER in (10) is S∗, and the sub-matrix constructed
by the t-th to (t + `)-th columns of S∗ is S∗

t:t+`. We prove
the theorem by contradiction.

Assume that
Ŝt:t+` 6= S∗

t:t+`. (13)

Then, the following inequality must hold

S∗
t:t+`Dt:t+` ≥ Ŝt:t+`Dt:t+`. (14)

Therefore, there must exist another global solution S∗∗, in
which the j-th column is

S∗∗
j =

{
Ŝj , j ∈ [t, t+ `],
S∗
j , j /∈ [t, t+ `],

(15)

such that
S∗∗D ≤ S∗D. (16)

Obviously, (16) is contradictory to the assumption that S∗

is the uniquely global optimal solution to SSER. Therefore,
the assumption (13) is not true. As a result, we have

Ŝt:t+` = S∗
t:t+`. (17)

Outside the active epochs, PLOA treats all appliances as
stand-by, the TV value is 0 in Ŝ. Since the TV value cannot
be negative, the TV value obtained with PLOA is the minimum
and must be the same as that obtained with the global optional
solution.

Overall, if the global optimal solution is unique, for any
time instant t, no matter whether t is in an active epoch or
outside active epochs, the state vector Ŝt ∈ Ŝ must be equal
to the state vector S∗

t ∈ S∗, which means Ŝ = S∗.
Given T aggregated power readings generated by N appli-

ances that can be broken into k active epochs with maximum
size w, the computational complexity of the original SSER
problem (10) is O(2N ·T ). With PLOA, solving the local
optimization problem in (12) k times results in the time
complexity upper bounded by O(k · 2N ·w). Considering that
the number of appliances N is constant and w � T , PLOA
significantly cuts down the computational complexity.

IV. EXPERIMENTAL EVALUATION

We use the real-world trace data collected from our energy
monitoring platform to evaluate our method, and compare
it with 1) a signature based approach, the Least Square
Estimation based integer programming method [13] and 2)
a state transition based approach, the iterative Hidden Markov
Model [12].

A. Data Collection

Currently, there are some research based datasets available
for energy disaggregation. Most of them, however, 1) are
circuit-oriented rather than appliance-oriented, such as the
REDD dataset [7], or 2) lack power information of appliances.
To avoid these problems, we setup an energy monitoring



platform where we can gather information according to our
demand.

We monitored the appliances’ energy consumption in a
typical laboratory and a lounge room in the fifth floor of
Engineering/Computer Science building at the University of
Victoria (UVic). Using an off-the-shelf solution developed
by Current Cost (http://www.currentcost.com), we recorded
the real-time power of laptops, desktops and some house-
hold appliances. Each appliance’s real power was measured
every 6 seconds by the device called Individual Appliance
Monitor (IAM), and the measurement results were transmitted
via wireless to a display server (EnviR), which can display
and temporarily store the collected data. Then, the data in
EnviR were sent to our data server. The platform, monitored
appliances, and measuring devices are shown in Fig. 2.

The power consumption information of appliances are sum-
marized in Table. I3, where the rated and stand-by powers are
learned from the users’ manual or according to [3], and the
power deviations are estimated from the collected power data
of each appliance. One may be concerned that the estimation
of power deviation in practice is inaccurate. With experimental
study, however, we will show that our method is resilient to
inaccurate power deviation estimations in Section IV-C.

TABLE I
POWERS INFORMATION OF APPLIANCES

ID Appliance Mode
Rated
Power
(Watts)

Power
Deviation
(Watts)

Stand-by
Power
(Watts)

1 LCD-Dell 1 25 5 0
2 LCD-LG 1 22 5 0

3 Desktop 1 40 15 32 50 20
4 Server 1 130 20 10

5 iMac 1 35 5 32 50 10

6 Laptop
1 15 5

12 30 10
3 70 10

7 Printer
1 400 50

22 700 80
3 900 100

8 Microwave
1 1000 100

22 1200 100
3 1700 100

9 Coffee Maker
1 700 100

22 900 100
3 1100 100

10 Refrigerator 1 115 15 52 350 10

11 Water Cooler
1 65 5

32 380 10
3 450 10

B. Performance Evaluation

We collected data for three months from the energy moni-
toring platform, and one-week data were used for performance
evaluation. The evaluation metrics are defined as:

3Considering some appliances may have multiple operating modes (rated
powers), we regard each as a virtual appliance, such that an individual
appliance with multiple modes was split into multiple virtual ones in the
SSER model.

• Energy Disaggregation Accuracy (EDA): It indicates the
accuracy of assigning correct power values to correspond-
ing appliances and was also used in [7].

EDA := 1−

∑N
n=1

∥∥∥X(n) − Ŝ(n)Pn

∥∥∥
1

‖X‖1
, (18)

where X(n), Ŝ(n) and Pn represent the true energy
consumption vector, the estimated state vector, and the
rated power of the n-th appliance, respectively, and X is
the aggregated power vector.

• State Prediction Accuracy (SPA): It indicates the accuracy
of estimating the states of appliances.

SPA := 1−

∑N
n=1

∥∥∥S(n) − Ŝ(n)
∥∥∥
1

N · T
, (19)

where S(n), Ŝ(n) represent the true state vector and the
estimated state vector of the n-th appliance, respectively,
and N,T represent the number of appliances and the
number of samples, respectively.

• Running time (R.T.) and memory usage (RAM)4: They
indicate the overhead on running time and memory space,
respectively.

Since the performance of the iterative HMM method de-
pends on model training, we run this method multiple times
over different sizes (w.r.t. number of samples) of training
datasets (denoted as training size). The average performance
is calculated over all the runs, and the best and the worst
performance are the best and the worst outcomes among all
the runs, respectively.

With the same prior knowledge in Table I, the performance
of the three methods are summarized in Table II. In addition,
as illustrated in Fig. 4, we also look into the overall energy
disaggregation accuracy of the three methods, which indicates
the energy contribution of each appliance to the total energy
consumption in the whole time period. From the results, we
can draw the following conclusions:

• In term of accuracy, our SSER method performs much
better than the LSE based method and slightly better than
the iterative HMM method in average.

• In term of overhead, our SSER method and the LSE
method are at a comparative level for running time and
system memory usage. While the memory usage of the
iterative HMM method is similar to that of the other two
method, its running time is much higher.

• The performance of the iterative HMM method is subject
to the training process and may have a large variation in
accuracy and in running time.

C. Robustness Test

In practice, the rated power of an appliance can be easily
learned. However, we may not precisely estimate the power
deviation of an appliance working under a certain mode. As

4We implemented the three methods with Matlab 8.0 and run them with
32-bit Windows OS with 3.4GHz CPU and 4GB RAM.



TABLE II
ACCURACY AND OVERHEAD OF ENERGY DISAGGREGATION, USING SPARSE SWITCHING EVENT RECOVERING (SSER), LEAST SQUARE ESTIMATION

(LSE) BASED INTEGER PROGRAMMING AND ITERATIVE HIDDEN MARKOV MODEL (HMM)
`````````Methods

Metrics ACCURACY OVERHEAD
EDA SPA Training Size R.T.(second) RAM(MB)

SSER 61.12% 69.62% – 865.4 596.8
LSE 33.40% 45.67% – 619.3 581.9
HMM (average) 55.27% 67.47% 2116 3721.3 558.6
HMM (best) 67.26% 71.29% 600 1299.7 557.9
HMM (worst) 41.09% 61.27% 3200 7089.6 561.4
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Fig. 4. Actual and estimated energy contributions of each appliance to the total energy consumption for one-week time period.

such, we test the performance of our method, assuming that
the power deviations of appliances are inaccurate. We replace
Θ with ρ ·Θ in the SSER model, so that the estimated power
deviations can be changed by regulating ρ.

TABLE III
ACCURACY OF ENERGY DISAGGREGATION USING SSER WITH

INACCURATE ESTIMATION ON POWER DEVIATION
PPPPPPρ

Metrics EDA SPA

0.8 55.28% 70.37%
0.9 60.33% 70.27%
1.0 61.12% 69.62%
1.1 56.94% 71.15%
1.2 59.59% 72.24%

We changed the value of ρ from 0.8 to 1.2, causing a
parametric error of power deviation up to 20%. Part of the
outcomes are shown in Table III. We can see that the accuracy
does not change too much when the parameter error varies,
indicating that our method is robust to parameter estimation.

V. CONCLUSIONS

In this paper, a simple, universal model for energy disag-
gregation was proposed. By making use of readily available
information of appliances, we built a sparse switching event re-
covering model based on the sparsity of appliances’ switching
events. Furthermore, we used the active epochs of switching
events to develop a parallel local optimization algorithm to
solve our model efficiently. In addition to analyzing the com-
plexity and correctness of our algorithm, we tested our method
with the real-world trace data from an energy monitoring
platform. The test results demonstrated that our method can
achieve better performance than the state-of-the-art solutions,
including the Least Square Estimation (LSE) method and
the machine learning method using iterative Hidden Markov
Model (HMM).
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[11] S. Osher, A. Solé, and L. Vese. Image decomposition and restoration
using total variation minimization and the h 1. Multiscale Modeling and
Simulation, 1(3):349–370, 2003.

[12] O. Parson, S. Ghosh, M. Weal, and A. Rogers. Non-intrusive load
monitoring using prior models of general appliance types. In AAAI,
2012.

[13] K. Suzuki, S. Inagaki, T. Suzuki, H. Nakamura, and K. Ito. Nonintrusive
appliance load monitoring based on integer programming. In SICE
Annual Conference, 2008, pages 2742–2747. IEEE, 2008.

[14] G. Tang, K. Wu, J. Lei, and J. Tang. Plug and play! a simple, universal
model for energy disaggregation. http://arxiv.org/abs/1404.1884, 2014.

[15] M. Zeifman and K. Roth. Nonintrusive appliance load monitoring:
Review and outlook. Consumer Electronics, IEEE Transactions on,
57(1):76–84, 2011.


